A numerical model to investigate the polarisation azimuth of ULF waves through an ionosphere with oblique magnetic fields
نویسنده
چکیده
A one dimensional, computational model for the propagation of ultra low frequency (ULF; 1–100 mHz) wave fields from the Earth’s magnetosphere through the ionosphere, atmosphere and into the ground is presented. The model is formulated to include solutions for high latitudes where the Earth’s magnetic field, (B0), is near vertical and for oblique magnetic fields applicable at lower latitudes. The model is used to investigate the wave polarisation azimuth in the magnetosphere compared with the ground wave fields, as a function of the dip angle of B0. We find that for typical ULF wave scale sizes, a 90 rotation of the wave polarisation azimuth from the magnetosphere to the ground occurs at high latitudes. However, this effect does not necessarily occur at lower latitudes in all cases. We show that the degree to which the wave polarisation azimuth rotates critically depends on the properties of the compressional ULF wave mode.
منابع مشابه
Propagation of ULF waves through the ionosphere: Inductive effect for oblique magnetic fields
Solutions for ultra-low frequency (ULF) wave fields in the frequency range 1–100 mHz that interact with the Earth’s ionosphere in the presence of oblique background magnetic fields are described. Analytic expressions for the electric and magnetic wave fields in the magnetosphere, ionosphere and atmosphere are derived within the context of an inductive ionosphere. The inductive shielding effect ...
متن کاملNumerical study of the generation and propagation of ultralow-frequency waves by artificial ionospheric F region modulation at different latitudes
Powerful high-frequency (HF) radio waves can be used to efficiently modify the upper-ionospheric plasmas of the F region. The pressure gradient induced by modulated electron heating at ultralow-frequency (ULF) drives a local oscillating diamagnetic ring current source perpendicular to the ambient magnetic field, which can act as an antenna radiating ULF waves. In this paper, utilizing the HF he...
متن کاملUltra-low-frequency electrodynamics of the magnetosphere-ionosphere interaction
[1] The results presented in this paper provide an explanation for electromagnetic oscillations with frequencies much less than the fundamental eigenfrequency of the magnetosphere measured in the regions where the ionospheric conductivity is low and a small-amplitude, large-scale electric field in the ionosphere exists. This study is based on numerical simulations of a reduced two-fluid MHD mod...
متن کاملAppraisal of electromagnetic induction effects on magnetic pulsation studies
The quantification of wave polarization characteristics of ULF waves from the geomagnetic field variations is done under ‘a priori’ assumption that fields of internal induced currents are in-phase with the external inducing fields. Such approximation is invalidated in the regions marked by large lateral conductivity variations that perturb the flow pattern of induced currents. The amplitude and...
متن کاملEffects of the magnetic field model and wave polarisation on the estimation of proton number densities in the magnetosphere using field line resonances
The cold, core plasma mass density in the Earth’s magnetosphere may be deduced from the resonant behaviour of ultra-low frequency (ULF; 1–100mHz), magnetohydrodynamic (MHD) waves. Ground-based magnetometers are the most widely used instruments for recording the signature of ULF wave activity in the magnetosphere. For a suitable model of the background magnetic field and a functional form for th...
متن کامل